
Running Away From
Computation - An Introduction

12:20-13:20, Tue, 6th June 2023

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 1

Core C++

2023
June 5-7

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

2

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University in
Boston, Massachusetts.

○ I teach courses in computer systems, computer graphics, and game
engine development.

○ My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training at courses.mshah.io 3

http://www.mshah.io
http://courses.mshah.io

Code for the talk

● Located here: https://github.com/MikeShah/Talks/tree/main/2023/2023_corecpp

4

https://github.com/MikeShah/Talks/tree/main/2023/2023_corecpp

Abstract

One of the fun and motivating reasons to use the C++ programming language is
the ability to optimize code. One of the best ways to optimize code is to avoid any
computation in the first place! In this talk, we are going to learn how to approach
the C++ programming language, thinking about compile-time computation (e.g.
constexpr, static_assert, and template meta-programming) and some other tricks
to avoid computation at run-time (e.g. short-circuit evaluation, caching, and lazy
evaluation). In this talk, participants will learn how these techniques improve
performance (with measurements using the perf profiler), as well as learn how
these techniques also make C++ a safer programming language. This is a
beginner level talk

The abstract that you read and enticed
you to join me is here!

5

Goal(s) for today

6

Running Away From
Computation - An Introduction

12:20-13:20, Tue, 6th June 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 7

Core C++

2023
June 5-7

So what is this
talk about?

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Running Away From
Computation - An Introduction

12:20-13:20, Tue, 6th June 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 8

Core C++

2023
June 5-7

Running?

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Running Away From
Computation - An Introduction

12:20-13:20, Tue, 6th June 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 9

Core C++

2023
June 5-7

Running
Computers
Faster?!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Running Away From
Computation - An Introduction

12:20-13:20, Tue, 6th June 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 10

Core C++

2023
June 5-7

What do I mean
“running away”?

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

What you’re going to learn today

● We are going to learn about a
fundamental computer science
trade-off that C++ offers us

○ Intrigued? Let’s continue!
● Audience:

○ Probably more beginner level/student,
but perhaps beneficial for mid-level folks
to think about.

Pretend these seats are filled :)
https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

11

https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

12

Warning -- this talk does include occasional performance numbers

Please validate on your architecture on data sets relevant to your program

Rated ‘E’ For Everyone!

(Yup, let’s just do our best to make C++ fun
for everyone involved)

E

Question to Audience:
What’s the most fundamental trade-off in

computer science (in your opinion)?

13*I’ll advance the slide when I hear the answer I want :)

Trade-off: Time versus Space!

14

● If you’ve read an algorithms book, you probably
have encountered this topic!

○ Space: meaning memory allocated ‘somewhere’
○ Time: meaning, the amount of time to execute a series

of statements
● We usually use Big-Oh notation (e.g. O(n),

O(n2), etc.) to describe the space or time of an
algorithm or data structure as a function of the
number of inputs.

○ That is, ‘n’ is the number of inputs or size of a collection.
○ Big-O complexity is a tool that might help us estimate or

choose an algorithm
■ (In practice we have to measure)

● Let’s look at an example however where there is
a clear trade-off between space and time.

https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Space Versus Time Trade-off
A tale of two singly linked lists

15

Linked List Experiment 1 (1/3)

● I’ll show you a little experiment now
comparing two singly linked lists

○ The first linked list is a minimal an implementation
of a linked list ‘LL1’

■ There’s a mHead to store the first node
■ Append takes an integer, and constructs a

new node that is searched for at the end of
the linked list.

16

Linked List Experiment 1 (2/3)

● I’ll show you a little experiment now
comparing two singly linked lists

○ The first linked list is a minimal an implementation
of a linked list ‘LL1’

■ There’s a mHead to store the first node
■ Append takes an integer, and constructs a

new node that is searched for at the end of
the linked list.

17

Linked List Experiment 1 (3/3)

● I’ll show you a little experiment now
comparing two singly linked lists

○ The first linked list is a minimal an implementation
of a linked list ‘LL1’

■ There’s a mHead to store the first node
■ Append takes an integer, and constructs a

new node that is searched for at the end of
the linked list.

18

Linked List Experiment 2 (1/3)

● Here is a second implementation of
a linked list ‘LL2’

○ We are going to pay some storage and
add a ‘mTail’ Node that keeps track of
the end of the linked list

○ Observe that our Append() function
removes the need for a loop

■ (It also becomes simpler to
implement!)

19

Linked List Experiment 2 (2/3)

● Here is a second implementation of
a linked list ‘LL2’

○ We are going to pay some storage and
add a ‘mTail’ Node that keeps track of
the end of the linked list

○ Observe that our Append() function
removes the need for a loop

■ (It also becomes simpler to
implement!)

20

Linked List Experiment 2 (3/3)

● Here is a second implementation of
a linked list ‘LL2’

○ We are going to pay some storage and
add a ‘mTail’ Node that keeps track of
the end of the linked list

○ Observe that our Append() function
removes the need for a loop

■ (It also becomes simpler to
implement!)

21

Question to Audience:

● Looking at the Big-O of each linked list -- which do you expect to be faster?
○ Ans: (next slide)

22

Linked List 1 -- O(n) Append Linked List 2 -- O(1) Append

LL2 is way faster than LL1

● From a ‘Big-O’ standpoint, we have gone from a O(n) implementation on LL1
to an O(1) time operation for Append on LL2.

○ The empirical measurement here is that we’re going from 14.5 seconds down to .013 seconds
■ Wow -- ~1457.2x (~145720%) speed improvement!

23

L
L
1

L
L
2

1457.2x (145720%) Improvement! (1/2)

● Another way to think of this improvement, is that in order to improve the speed, I
reduced the number of instructions needed to get a result at run-time.

○ Simple enough -- do less work while achieving the same result means we’ll likely yield a performance
improvement

24

Linked List 1 -- O(n) Append Linked List 2 -- O(1) Append

1457.2x (145720%) Improvement! (2/2)

● Another way to think of this improvement, is that in order to improve the speed, I
reduced the number of instructions needed to get a result at run-time.

○ Simple enough -- do less work while achieving the same result means we’ll likely yield a performance
improvement

25

Linked List 1 -- O(n) Append Linked List 2 -- O(1) Append

This is a classic example of a
‘run-time’ optimization (i.e. choosing a
better algorithm).

The types of things some of us love to
find as performance engineers!

Recap (1/2)

(Note: I could have ‘cheated’ and run ‘LL1’ on a much faster machine to perhaps get it faster -- but let’s assume our experiments are run on the
same machine in as close of a run-time environment as possible)

● We made a significant performance improvement at run-time
○ i.e. We reduced the amount of time to complete the task by using a better data structure and

implementation
○ The cost for us (the change in space complexity) was one additional pointer

■ 8-bytes of data on a 64-bit system per linked list data structure
● i.e. O(1) space complexity -- still constant!

○ The benefit
■ We reduce our ‘append’ to an O(1) operation versus the previous O(n)

● And this space trade-off appears very good to me!
○ (especially if we are certain our linked lists will use ‘append’ frequently)

26

Recap (2/2)

(Note: I could have ‘cheated’ and run ‘LL1’ on a much faster machine to perhaps get it faster -- but let’s assume our experiments are run on the
same machine in as close of a run-time environment as possible)

● We made a significant performance improvement at run-time
○ i.e. We reduced the amount of time to complete the task by using a better data structure and

implementation
○ The cost for us (the change in space complexity) was one additional pointer

■ 8-bytes of data on a 64-bit system per linked list data structure
● i.e. O(1) space complexity -- still constant!

○ The benefit
■ We reduce our ‘append’ to an O(1) operation versus the previous O(n)

● And this space trade-off appears very good to me!
○ (especially if we are certain our linked lists will use ‘append’ frequently)

27

And this leads me to another fundamental trade-off, but specific to C++
(and other compiled languages)

So this leads into another fundamental
trade-off in C++ we can make and that is ...

28

So this leads into another fundamental
trade-off in C++ we can make and that is ...

Compile-Time versus Run-Time

29

Compile-Time Versus Run-Time

● In C++ we really have two places where we can trade space for time*
○ Compile-Time and run-time

● Something that I often tell my students when they first start programming in
C++ is that we can think about computation at compile-time and run-time

○ If they’re coming from a background programming in interpreted languages this is something
new

○ And in some ways, we do ‘pay’ for the ‘cognitive overhead’ initially with the language (thinking
about run-time and compile-time operations),

■ i.e. Having to remember to edit->save->compile-run.
● (Though tools, IDEs, etc. lower some of this cognitive burden).

30*okay maybe 3, it might be fair to add link time (the static and dynamic linker never gets enough respect huh) -- and we can further subdivide from there, but I like 2 for this talk

Compilation Process
A quick look

31

C++ Compilation (using g++, clang++, msvc, etc.)

● I think it’s fair to classify C++ as an example of a ‘compiled language’ [1]
● Compilers take our source code (.cpp files) and eventually transform our code

to assembly and ultimately machine code.
○ (Eventually that assembly is code is turned into an executable object file

■ (i.e. The thing you can just double click on to run or type ./program).)

32[1] C++ interpreters do exist however! e.g. https://root.cern/cling/

Stage 1: The Preprocessor Stage 2: Compilation Stage 3: Assembler Stage 4: Linker

https://root.cern/cling/

Stages of a C++ Program

● A high level view of the compilation process of source code is shown:
○ Observe that there is ‘computation’ going on during these stages

■ Much of it is computation to transform C++ syntax into assembly
■ But we can actually use these stages to perform useful computations during

compile-time.

33

Stage 1: The Preprocessor Stage 2: Compilation Stage 3: Assembler Stage 4: Linker

Compile-Time versus Run-time (1/3)

● So compile-time means we think about what operations and computations
that happen before we execute a program

● Run-time means we are concerned with the actual execution of the program

34

Stage 1: The Preprocessor Stage 2: Compilation Stage 3: Assembler Stage 4: Linker

[1] C++ interpreters do exist however! e.g. https://root.cern/cling/

https://root.cern/cling/

Compile-Time versus Run-time (2/3)

● So compile-time means we think about what operations and computations
that happen before we execute a program

● Run-time means we are concerned with the actual execution of the program

35

Stage 1: The Preprocessor Stage 2: Compilation Stage 3: Assembler Stage 4: Linker

[1] C++ interpreters do exist however! e.g. https://root.cern/cling/

https://root.cern/cling/

Compile-Time versus Run-time (3/3)

● So compile-time means we think about what operations and computations
that happen before we execute a program

● Run-time means we are concerned with the actual execution of the program

36

Stage 1: The Preprocessor Stage 2: Compilation Stage 3: Assembler Stage 4: Linker

[1] C++ interpreters do exist however! e.g. https://root.cern/cling/

Let’s learn a little bit about
some run-time optimizations
that we can make, and see if
we can also apply them at
compile-time!

https://root.cern/cling/

Running away from computation at run-time

37

Run-time Optimization is fun and... (1/2)

38

● It’s a good place to run the scientific method:
○ Ask a Question

■ (“e.g. Why is my code slow”)
○ Do some Research

■ (e.g. Watch some Corecpp talks on performance, read some C++ books, etc.)
○ Construct a hypothesis

■ (e.g. “I think this is slow because of XYZ”)
○ Test your hypothesis with an experiment

■ (e.g. “Run your code with a profiler”)
○ Analyze your data

■ (i.e. Look at where you are spending time in your profile)
○ Communicate your results

■ (e.g. “Hey team, merge my pull request, my program is 145720 times faster!”)

Run-time Optimization is fun and... (2/2)

39

● It’s a good place to run the scientific method:
○ Ask a Question

■ (“e.g. Why is my code slow”)
○ Do some Research

■ (e.g. Watch some Corecpp talks on performance, read some C++ books, etc.)
○ Construct a hypothesis

■ (e.g. “I think this is slow because of XYZ”)
○ Test your hypothesis with an experiment

■ (e.g. “Run your code with a profiler”)
○ Analyze your data

■ (i.e. Look at where you are spending time in your profile)
○ Communicate your results

■ (e.g. “Hey team, merge my pull request, my program is 145720 times faster!”)

In this talk, I’ll provide a
few examples and see if
we can find some
themes

#1 Use a better algorithm (for your use case)

40

● We saw this with the linked list example so I hope that is clear.
○ In order to improve run-time performance, we often trade space for time.

■ More storage in our linked list example unlocked a better algorithm
○ It’s a good starting point to try to reduce the amount of ‘recomputation’ that you have perform.

Linked List 1 -- O(n) Append Linked List 2 -- O(1) Append

#2 Do Less Work (1/4)

41

● Sometimes you don’t need to
trade space for time to reduce
the number of computations you
perform

● Here’s an example I probably
learned in a book like above --
basic but important!

○ Short-circuit evaluation

#2 Do Less Work (2/4)

42

● Sometimes you don’t need to
trade space for time to reduce
the number of computations you
perform

● Here’s an example I probably
learned in a book like above --
basic but important!

○ Short-circuit evaluation
○ Observe that the first example

allows me an ‘early exit without
evaluating the entire condition

#2 Do Less Work (3/4)

43

● If I naively flip the operation for
the more expensive operation to
occur first -- that could be
costly!

○ It may make sense to do the cheap
thing first!

■ (i.e. put ‘flag’ first like in the
previous example)

● Order of evaluation can
sometimes matter!

#2 Do Less Work (4/4)

44

● If I naively flip the operation for
the more expensive operation to
occur first -- that could be
costly!

○ It may make sense to do the cheap
thing first!

■ (i.e. put ‘flag’ first like in the
previous example)

● Order of evaluation can
sometimes matter!

○ There that’s better!

Micro versus macro decisions (1/2)

45

● And I think this is an interesting
junction point when it comes to
run-time optimizations

○ Turn Left: We can look at more
little optimizations that add up (and
this can often be in very meaningful
ways!)

■ e.g. short-circuiting
○ Turn Right: Continue writing better

algorithms and data structures
■ e.g. Choose a better data

structure

Let’s take a left turn and look!

Turn Left
Micro
optimize

Turn Right
Revisit Better
algorithms,
better data
structures

Micro versus macro decisions (2/2)

46

● And I think this is an interesting
junction point when it comes to
run-time optimizations

○ Turn Left: We can look at more
little optimizations that add up (and
this can often be in very meaningful
ways!)

■ e.g. short-circuiting
○ Turn Right: Continue writing better

algorithms and data structures
■ e.g. Choose a better data

structure

Let’s take a left turn and look!

Turn Left
Micro
optimize

Turn Right
Revisit Better
algorithms,
better data
structures

#3 Hand tune optimizations

47

● This is getting into the fun world of really hand tuning our code
○ Find code we are not using and eliminate it

■ i.e. dead code elimination
○ Common Subexpression elimination

■ i.e. Compute an expression one time and cache a value
○ Unrolling loops

■ i.e. Help our processor out by manually unrolling loops
○ inlining functions

■ i.e. avoiding function call overhead and enabling other optimizations
○ Strength Reduction/Instruction Selection

■ i.e. choosing better instructions
● I love cleaning up my code with some of these optimizations

■ (Spoiler alert: We’ll revisit these at ‘compile-time’ as many of these listed at
compile-time!)

Turn Right
Revisit
Better
algorithms,
better data
structures

#3 Hand tune optimizations - Dead Code Elimination

48

● Dead Code Elimination is the
process of removing unused
variables or unreachable code from
our project

○ No need to include computation (and
storage) that we are not going to make
use of!

○ (And it’s just less to manage during a
code review!)

Turn Right
Revisit
Better
algorithms,
better data
structures

https://en.wikipedia.org/wiki/Dead-code_elimination

https://en.wikipedia.org/wiki/Dead-code_elimination

#3 Hand tune optimizations - Common Subexpression Elimination (1/2)

49

● We can compute a value once and
‘cache’ the value to avoid
recomputing it

○ Observe on the right that the value ‘b*c’
is computed more than once.

■ Thus, we can cache that value
■ More expensive operations (e.g.

trig function, certain divisions,
etc.) may have more benefit.

Turn Right
Revisit
Better
algorithms,
better data
structures

https://en.wikipedia.org/wiki/Common_subexpression_elimination

https://en.wikipedia.org/wiki/Common_subexpression_elimination

#3 Hand tune optimizations - Common Subexpression Elimination

50

● That little idea of ‘caching’ might
also help you avoid recomputing
sneaky function calls

○ Compare the two loops
○ Perhaps ‘size’ of a graph has to be

walked each loop
■ If we know the size won’t change

in the loop, no need to have the
overhead!

Turn Right
Revisit
Better
algorithms,
better data
structures

https://en.wikipedia.org/wiki/Common_subexpression_elimination

*Note: Pretend that size actually does some meaningful traversal and does not just
return the integer ‘42’.

https://en.wikipedia.org/wiki/Common_subexpression_elimination

#3 Hand tune optimizations - Strength

51

● And here’s one final hand tuned
optimization that may make a
difference when it comes to
instruction selection

○ Observe ++i versus i++
○ Observe ‘<’ versus ‘!=’

● These types of ‘strength reduction’
optimizations may result in
assembly instructions that take
fewer cycles

○ Less computation--great!
○ (And in this case, probably exactly what

we want with the algorithm,
■ != for example is more intentional

of the intent)

Turn Right
Revisit
Better
algorithms,
better data
structures

https://en.wikipedia.org/wiki/Common_subexpression_elimination

https://en.wikipedia.org/wiki/Common_subexpression_elimination

And we can continue further... (1/3)

52

● Hand optimizing code is fun (to me)
○ And going through the process makes us often think

carefully line by line of how much and what are we
computing

● But let’s try to take that other road -- let’s
revisit some algorithms and data structures

Turn Right
Revisit Better
algorithms,
better data
structures

And we can continue further... (2/3)

53

● Hand optimizing code is fun (to me)
○ And going through the process makes us often think

carefully line by line of how much and what are we
computing

● But let’s try to take that other road -- let’s
revisit some algorithms and data structures

Turn Right
Revisit Better
algorithms,
better data
structures

Turn Left
Micro
optimize

And we can continue further... (3/3)

54

● Hand optimizing code is fun (to me)
○ And going through the process makes us often think

carefully line by line of how much and what are we
computing

● But let’s try to take that other road -- let’s
revisit some algorithms and data structures

Turn Right
Revisit Better
algorithms,
better data
structures

Turn Left
Micro
optimize

Yes -- I did think of the Sean Parent talk when labeling this text

#4 Better Algorithms, Better Data Structures (1/3)

55

● A C++ STL example might be map versus unordered_map
● Question to the Audience: What is the main difference between these two

data structures?
○ Answer: next slide

Turn Left
Micro
optimize

#4 Better Algorithms, Better Data Structures (2/3)

56

● A C++ STL example might be map versus unordered_map
● Question to the Audience: What is the main difference between these two

data structures?
○ Answer: next slide

■ map is sorted
● This means we usually need a balanced tree structure (e.g. rb-tree)

○ (log2(n) operations)
■ unordered_map is not sorted

● This means we usually use a hash table
○ (O(1) average case operations)

● If you don’t need your data sorted, then unordered_map can be much
more efficient at insertion/deletion/update.

○ Don’t pay for something that you won’t need at run-time

Turn Left
Micro
optimize

#4 Better Algorithms, Better Data Structures (3/3)

57

● ^ We can do a few semesters worth or otherwise make a career out of
learning more data structures and algorithms

○ So this is this the end of our run-time optimizations strategies?
■ i.e. Just keep learning (or maybe one day inventing yourself!) new algorithms/data

structures for the problem you solve?

Turn Left
Micro
optimize

Done with run-time computation?

58

● Well...
○ I’ve shown you cute/real tricks to optimize some

code
○ I’ve reminded you that data structures and

algorithms matter for efficiency
● The good news is we have more strategies

to truly ‘run away from computation’ -- and
make our code potentially more performant

Turn Left
Micro
optimize

Turn Right
Revisit Better
algorithms,
better data
structures

#5 Delay/Stall

59

● So there’s another option instead of making a
left turn or a right turn -- let’s just sit here and
wait

○ i.e. we’re going to pick a third route of just stalling or
delaying.

○ Let’s just stall/delay/defer our computation as long
as possible

■ Let’s run away from the problem (at least for a
while) :)

Turn Left
Micro
optimize

Turn Right
Revisit Better
algorithms,
better data
structures

Sit here and
stall

#5 Delay/Stall - Promise/Future (1/2)

60

● Here’s a mechanism we have available in C++11
using Promises and Futures

○ (You can read the example code later.)
● The key idea here is that we can launch another

thread to do some work
○ Then proceed in our program as normal
○ Then block until we have a result

■ (can also use ‘myFuture.get’)
● This seems to be the ‘right idea’ for delaying our

computation
○ (Though we’re still computing somewhere, on some other

thread -- so a price is paid!)

#5 Delay/Stall - Promise/Future (2/2)

61

● In this example however, we are still doing all of
the work in a separate thread

○ So I need to show you something that builds off of this
mechanism

#5 Delay/Stall - std::async

62

● std::async is a simpler
mechanism to defer
computation .

○ std::async will return a
std::future for us.

● Observe in this example
we do not actually compute
until we hit ‘.get’

○ This is due to the
std::launch::deferred
argument in std::async

○ This is the execution policy
● We call this deferred

(a.k.a ‘lazy’) computations.
○ e.g.

■ See
std::launch::deferred

We never execute
this block of code
so we pay no cost
to evaluate ‘lazy’

This is lazy
evaluation

https://en.cppreference.com/w/cpp/thread/launch

Stall longer

● So I like this strategy of stalling/delaying
computation

○ We can thus avoid some unnecessary computation
● But there also exists more strategies to stall

and avoid computation.
○ Let’s review one more!

63

Turn Left
Micro
optimize

Turn Right
Revisit Better
algorithms,
better data
structures

Sit here and
stall

Stall more

#6 - Copy on Write (CoW)

64

● Copy-on-Write is just another strategy to defer computation (like our previous
ones)

○ The idea is whenever we make a copy of some memory (i.e. a data structure), we don’t
immediately need to make a fresh copy of that memory

■ For example: if the only operations we are doing is a ‘read operation’ on our newly
copied data, do we really need to update anything?

● The answer is no -- at least for as long as we can!
● Note:

○ Copy-on-write is also known as ‘lazy initialization’

Run-time computation Strategies (1/3)

● So here’s a summary of reducing computation
○ #1 Use a Better Algorithm

■ (Often paying storage to enable this)
○ #2 Do less work

■ (Short circuiting, or choosing the least costly
operation first if we can terminate early)

○ #3 Hand tune our code
■ (Select better instructions, perform clever code

tricks)
○ #4 Better algorithms, better data structures

■ (Kind of the same as number 1 -- just be sure to
pay for what you actually need the data structure to
do)

○ #5 Delay/Stall
■ std::async as an example for deferring computation

(Note: We did use a thread to help us)
○ #6 Copy-on-Write

■ Another way to defer

65

Turn Left
Micro
optimize

Turn Right
Revisit Better
algorithms,
better data
structures

Sit here and
stall

Stall more

Run-time computation Strategies (2/3)

● So here’s a summary of reducing computation
○ #1 Use a Better Algorithm

■ (Often paying storage to enable this)
○ #2 Do less work

■ (Short circuiting, or choosing the least costly
operation first if we can terminate early)

○ #3 Hand tune our code
■ (Select better instructions, perform clever code

tricks)
○ #4 Better algorithms, better data structures

■ (Kind of the same as number 1 -- just be sure to
pay for what you actually need the data structure to
do)

○ #5 Delay/Stall
■ std::async as an example for deferring computation

(Note: We did use a thread to help us)
○ #6 Copy-on-Write

■ Another way to defer

66

Turn Left
Micro
optimize

Turn Right
Revisit Better
algorithms,
better data
structures

Sit here and
stall

Stall more

● This isn’t even close to a complete list of how we can
further think about optimizing code (or the art of
profiling, understanding cpu/gpu architecture, etc.)

● But hopefully this gives you some model of thinking at
run-time!

Run-time computation Strategies (3/3)

● So here’s a summary of reducing computation
○ #1 Use a Better Algorithm

■ (Often paying storage to enable this)
○ #2 Do less work

■ (Short circuiting, or choosing the least costly
operation first if we can terminate early)

○ #3 Hand tune our code
■ (Select better instructions, perform clever code

tricks)
○ #4 Better algorithms, better data structures

■ (Kind of the same as number 1 -- just be sure to
pay for what you actually need the data structure to
do)

○ #5 Delay/Stall
■ std::async as an example for deferring computation

(Note: We did use a thread to help us)
○ #6 Copy-on-Write

■ Another way to defer

67

● This isn’t even close to a complete list of how we can
further think about optimizing code (or the art of
profiling, understanding cpu/gpu architecture, etc.)

● But hopefully this gives you some model of thinking at
run-time!

If you’re a GPU programmer I hear
you screaming

“Run towards computation! Let’s
compute more (in parallel)--we paid

good money for our machines!”

(That’ll have to be another talk!)

Turn Left
Micro
optimize

Turn Right
Revisit Better
algorithms,
better data
structures

Sit here and
stall

Stall more

Running away from computation at
compile-time

68

Compile-Time Computation

69

● So remember, the great thing about a compiled language like C++ is we also
get to make choices to execute code at compile-time.

○ At first the idea of ‘execute at compile-time’ seems weird (and it still is weird to me
sometimes)

○ i.e. You might ask -- doesn’t the machine need to execute before we can run?
● Let me introduce you to some ideas of computation we can control at

compile-time.
○ (Spoiler alert: Many of these items are familiar from our run-time optimizations!)

#1 Let the Compiler Optimize (-O2) - Dead Code Elimination

70

● At compile-time our compiler often
has a much better view of the entire
source code versus myself at a
given time

○ So the compiler is able to remove any
provably unused variables, expressions,
or unreachable code.

https://en.wikipedia.org/wiki/Dead-code_elimination

https://en.wikipedia.org/wiki/Dead-code_elimination

#1 Let the Compiler Optimize (-O2) - Common Subexpression Elimination

71

● Our compiler can similarly use
heuristics to otherwise cache
subexpressions

○ More expensive operations (e.g. trig
function, certain divisions, etc.) may
have even more benefit here!

● Aside: These compiler
optimizations are good to know --
because then you can write more
readable code in your first iterations
and focus on correctness before
fine tuning.

https://en.wikipedia.org/wiki/Common_subexpression_elimination

https://en.wikipedia.org/wiki/Common_subexpression_elimination

Strategy 2 - Question to Audience:

● What (or will there be) is the
difference in the assembly code
between these two functions?

○ (Answer: next slide)

72

#2 Use References [Core guideline]

● What (or will there be) is the
difference in the assembly code
between these two functions?

○ Answer:
■ No difference!

73

● Same instructions, but generally we like
‘references’ over pointers. Why?

○ Well, I should probably check if that pointer
‘p’ is a nullptr

■ That’s a few extra steps of
computation that I have to worry about
less often with references.

https://isocpp.org/wiki/faq/references#refs-vs-ptrs

Question to Audience:

● So thinking about our previous discussion on pointers and references here’s a
question.

● Question: When is the best time to catch a bug?
○ (ans: next slide)

74

Question to Audience:

● So thinking about our previous discussion on pointers and references here’s a
question.

● Question: When is the best time to catch a bug?
○ Ideally before it even occurs!
○ So, if we can catch a bug at compile-time, that is optimal for us as a developer (and of course

our end-user)
■ Let’s look at some of the features C++ offers us

75

#3 Use static_assert when possible [Core Guideline] (1/2)

● In C++11 we added static_assert
which does a check at compile-time
against values known at
compile-time (constexpr coming
up!)

○ static_assert is an example of us being
explicit in the language of where we
want to check something -- in this case
the size of an integer

■ (versus assert, which is checked
at run-time)

● With static_assert, the user does
not pay a cost at run-time 76

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p5-prefer-compile-time-checking-to-run-time-checking

#3 Use static_assert when possible [Core Guideline] (2/2)

● In C++11 we added static_assert
which does a check at compile-time
against values known at
compile-time (constexpr coming
up!)

○ static_assert is an example of us being
explicit in the language of where we
want to check something -- in this case
the size of an integer

■ (versus assert, which is checked
at run-time)

● With static_assert, the user does
not pay a cost at run-time 77

Similar to the references versus pointer discussion -- how nice it is if you can
catch bugs at compile-time and avoid writing lots of error handling code!

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p5-prefer-compile-time-checking-to-run-time-checking

#4 constexpr [cppreference]

● In C++ we can mark things as ‘constexpr’ to try to evaluate at compile-time
○ Thus, we pay a cost at compile-time (developer) as opposed to run-time (user) to perform a

computation
○ ‘constexpr’ also gives us some advantages when you start thinking about undefined behavior

-- the behavior must be defined for us to compute a result (otherwise, compile-error or
compiler bug!)

78

https://en.cppreference.com/w/cpp/language/constexpr

#4 constexpr [cppreference] - factorial (1/3)

● Here’s an example of a ‘factorial’
evaluated and checked at
compile-time using constexpr

79

Compile-time factorial

https://en.cppreference.com/w/cpp/language/constexpr

#4 constexpr [cppreference] - factorial (1/3)

80

Compile-time factorialrun-time factorial (no constexpr)

The version on the left does not make use
of constexpr

https://en.cppreference.com/w/cpp/language/constexpr

#4 constexpr [cppreference] - factorial (1/3)

81

Compile-time factorialrun-time factorial (no constexpr)

When comparing the assembly, it becomes
immediately obvious which program is doing
more computation!

...

https://en.cppreference.com/w/cpp/language/constexpr

#5 Static Data (1/2)

● Now what happens when we have
lots of data that we want to load?

○ We could pay the cost of loading a file,
checking if a file exists, allocating
memory, computing results in a table,
etc.

○ Or we could just embed the data inside
the executable

■ Now we are making a
compile-time decision on time
versus space trade-off

● Our tool for embedding data is
‘static’

○ Note: At compile-time we are paying
the cost of our time to insert a
precomputed result with each compile if
we are making changes 82

#5 Static Data (2/2)

● Observe that I can precompute
much of the data I need.

○ In fact, if I want to compute the next
factorial -- it’s faster to do a lookup from
the table (i.e. we have ‘memoized’ part
of the solution) our last index, and
proceed forward.

83

(Aside)

● There are some tools like bin2h that may also be useful for storing binary data
in header files

○ https://github.com/rinthel/bin2h
● Note: I believe C23 has #embed

○ So C++ should have some access as well depending on your compiler support

84

https://github.com/rinthel/bin2h

#6 Template Metaprogramming

● We have further tools that can
perform computation at
compile-time!

○ Well, really templates are our tool
for generating code at
compile-time!

■ (We pay in ‘space’ in this
case)

○ But we can use templates to
choose at compile-time optimal
algorithms

■ (see example to the right)
○ Or, we truly can use templates to

compute

85

Observe in this example that someone made a
specialization of a vector class to unroll a loop. At
compile-time, we can ‘choose’ the optimal specialized
algorithm
https://en.wikipedia.org/wiki/Template_metaprogramming#Compile-time_code_optimization

https://en.wikipedia.org/wiki/Template_metaprogramming#Compile-time_code_optimization

Summarizing

● #1 Utilize your compiler
○ Enable optimizations (i.e. Using -O1, -O2, -O3 -- That’s an uppercase letter ‘o’)

● #2 Use References
○ Generally, prefer them when you don’t need a pointer!

● #3 static_assert
○ Test at compile-time (and potentially save run-time computation)

● #4 constexpr
○ Explicitly request to evaluate at compile-time

● #5 Utilize static storage
○ Utilize precomputed data in algorithms

● #6 Template Metaprogramming
○ Select at compile-time the optimal algorithm
○ Or, can otherwise generate code

86

Wrapping Up

87

Summary

● We’ve discussed a fundamental trade-off in computer science: Time versus
Space

○ And we can now start taking that decision into our C++ code at compile-time and run-time
● Hopefully you’re leaving with a few introductory tricks on how to compute (or

avoid computation) at run-time and/or compile-time
○ The theme of this talk could’ve been ‘moving computation: trade-offs’ perhaps

■ But again understand that a key advantage of C++, is our ability to choose where, when,
and how much we compute.

○ So just remember, a subset of the ‘time and space’ trade-off is: ‘compile-time versus run-time
computation trade-off’

88

Further resources and training materials

89

● Sean Parent: Better Code Better Data Structures
○ https://www.youtube.com/watch?v=sWgDk-o-6ZE

● API Design for C++ by Martin Reddy
○ See chapter on Copy-on-Write for implementation

● History of Time: Asynchronous C++ - Steven Simpson [ACCU 2017]
○ https://www.youtube.com/watch?v=Z8tbjyZFAVQ

● Compiler optimizations
○ https://compileroptimizations.com/

https://www.youtube.com/watch?v=sWgDk-o-6ZE
https://www.youtube.com/watch?v=Z8tbjyZFAVQ
https://compileroptimizations.com/

A Homework Assignment for Students

90

● Try computing factorial multiple ways
○ at run-time
○ at compile-time using a precomputed table
○ using templates

● Measure the space of the final binaries for each
● Measure the run-time executing each program
● Measure the time to compile each program

○ What if you split up some of the files? Does that change the compile-time?

Running Away From
Computation - An Introduction

12:20-13:20, Tue, 6th June 2023

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 91

Thank you Core C++!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

92

Extra

93

